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Abstract. The article presents alternative version of Bayesian vector auto-
regression model with Laplace distributed innovations. Bayesian estimation in
such model is more computationally demanding than estimation in a model
with normally distributed innovations, but because of the heavier tails of
Laplace distribution, is more robust. In the article I try to present the way of
proceeding with the estimation, obtaining a full posterior distribution of the
parameters as a result. At the end an efficient algorithm is sketched, but this
part of the research is still unfinished.
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1 Introduction

Modeling financial market price is a challenging task. Systematic mathematical modeling has been first
employed by Bachelier at the beginning of the 20th century [1]. In the middle of the century several
branches of research have emerged in the finance community, two of which I consider the main influences
for writing the following text. A branch followed first by Black, Scholes, Merton and others [2, 3, 4] being
motivated by the hypotheses of Fama [5] and Samuelson [6] in stating the market to be efficient and the
number of transactions in the market to be large in every time interval and a branch followed by many
econometricians, modeling the market price using time series models based on ARMA models described
in depth by Box and Jenkins [7].

1.1 Modeling market price in continuous time

The former approach leads to the use of the geometric Brownian motion Wt with drift as a model of
market price evolution, where the stochastic process modeling the price Yt is described by a stochastic
differential equation

dYt
Yt

= αtdt+ σtdWt (1)

where the parameters αt, σt are often considered constant in time. Although such a model is a rich
one and is based on foundations evolving now for more than half a century, it has certain drawbacks
that cause it not to explain many important phenomena observed in the market data time series. For
a moment I set aside the problem of efficient market hypothesis (EMH) itself and I focus on the second
major drawback. It is the limit used in the derivation of the model from a random walk that except for
making the time continuous also considers a large number (in an extreme case infinite) of transactions
in every time interval. The Central Limit Theorem (Donsker’s Theorem [8]) then collapses the natural
distribution of innovations in the random walk to a Wiener process, if we consider the path of the process
to be continuous and a few rather natural conditions of the process to be fulfilled.

In an observed time series from a real market measured empirical distributions of differences of
logarithmized data lnYt+1 − lnYt are often very different from a Gaussian distribution on practically all
time scales. These distributions are usually heavy-tailed, meaning they may present a higher risk of high
price moves than the often assumed normal distribution. As mentioned by Bouchaud and Potters [9],
the differences are quite close to being drawn from a Student distribution. In the branch of financial
mathematics research following Merton, the mentioned problem is often resolved by assuming a more
general class of Levy processes for modeling the time series [10], since the stochastic calculus used by
Merton can be extended to cover these as well, but the study of these processes is out of scope of presented
text.

1.2 Use of AR processes

The second branch of using a model of ARMA type to describe the stochastic process underlying market
price (and generally market data) generation is not based on an underlying economic theory as much as

1Department of Adaptive Systems, Institute of Information Theory and Automation, Academy of Sciences of the Czech
Republic, Pod Vodarenskou vezi 4, 18200 Prague, Czech Republic, e-mail: jenik.sindelar@gmail.com

1



on the richness of the entire class of such models. Since the models are in contradiction with the stronger
forms of EMH, they haven’t been used so often in the group of financial mathematicians following Merton,
although there have been articles written [11, 12] about their financial application and their use in other
areas of application is very common. The class is so rich that a discretized version of the model (1) is
its member and therefore, if we have a good structure selection method at hand, which often proves to
be unrealistic, we can test, if the use of the Brownian motion-like model is adequate. Another advantage
of these models is that since they are discrete time, there is no limit forcing the distribution of the
innovations to be normal. In the following text we consider only models of AR type, therefore narrowing
the model class. If the market is complete, in that there are so many generating sources of implicit
uncertainty (the vector of innovations is of the same size as the vector of data on the left-hand size
of a vector version of (1)) as there are data channels, this class will still contain the vector or many
asset extension of the Brownian motion model. In a general vector form such stochastic process can be
described by

Φt+1 = AΦt + Σet+1 (2)

where Φt is a general random vector (it has to be finite dimensional for the process to be Markovian)
belonging to certain market data channels, containing among them the price Yt, but generally also other
data channels, possibly belonging to multiple assets, which is a case not further covered in this article,
A,Σ are matrices of unknown parameters and et is the innovation. Vectors and matrices are denoted by
a bold font. The model is of arbitrary finite order in time, since in the data vector Φt−1 values with time
lags greater than one are included by extending the model as shown in [13]. Because the matrix Σ is a
square root of a positive definite matrix, we can reparametrize the model as

Φt = [I−B] Φt + BAΦt−1 + D
1
2 et (3)

where B is a lower triangular matrix with units on the diagonal and D
1
2 is a diagonal matrix. Thus

we have effectively decoupled the vector process into individual AR processes with scalar left-hand side,
so that without a loss of generality we can work with a model, where the innovation is a single random
variable.

1.3 Proposing a model with Laplace innovations

In a well established practice the innovation is taken to be normally distributed, usually because of
computational tractability of estimation of the parameters. Such a model for financial data in a Bayesian
setup has been proposed and tested, see [13]. Koenker and Bassett show in their nowadays classic
article [14] the dangers of such assumption for a linear regression model. Although correct modeling, if
there is such, can resolve the heavy tailed behavior of market price difference distribution a “physical”
explanation of the process of price creation would be needed to justify the model used. If we are not certain
about the model, a more robust version may be more adequate. The efficiency of different estimators of
parameters of linear regression model can be looked up in the above mentioned article [14] in Table I.
These estimators are usually used by the robust statistics community in order to produce robust point
estimates of the parameters in the model. Bayesian statistics on the other hand allow us to have access
to the entire posterior likelihood of the parameters conditioned on the data, if we choose the distribution
of the innovations and choose a Bayesian conjugate or improper prior. As shown in [14] median is a
maximum a posteriori likelihood estimate in a linear regression model with Laplace errors. Inspired by
the result I propose in the text the use of Laplace distribution in the AR model.

Distributions with heavier tails could be used to obtain an even more robust model, but as we shall
see, such choice would make the Bayesian estimation too difficult and we see from [14] that the increase
in efficiency of the estimation may be quite large even when real innovations have very heavy tails.

Example 1. For illustration of the usefulness of such an estimation at the cost of higher computational
burden, we now look at maximum likelihood estimation of the mentioned model, where improper prior
for the parameters was chosen. I have generated a sample price of 5000 samples from a model

Yt+1 = 0.97Yt + et+1 (4)

with a starting condition y0 = 0, where et+1 is Student distributed with ν = 4, var [et+1] = 1, µ = 0 with
the parameters not chosen at random, but according to a distribution fit to price differences presented in
[9]. Afterwards an estimation of the single parameter α was performed in a model

Yt+1 = αYt + et+1 (5)



where the innovation was first taken to have normal and then Laplace distribution. In the first case the
maximum likelihood estimate is of the form

α̂GML =

∑T
t=2 ytyt−1∑T
t=2 y

2
t−1

(6)

where GML stands for Gaussian maximum likelihood, LML will be Laplace maximum likelihood and yt
are the realizations of random variables Yt for t ∈ {1, . . . , T}. In the second case the estimate comes
down to computing

α̂LML = arg min
α

[
T∑
t=2

|yt − αyt−1|

]
(7)

where the minimum is attained at one of the points, where the individual absolute value terms in the sum
are equal to zero – αt = yt

yt−1
t ∈ {1, . . . , T}. For such estimates I’ve evaluated a Monte Carlo variance

test, where estimates GML and LML were computed for each of the m time-series of length n and
empirical median, mean and variance were computed for these m samples. The results are summarized
in the following table

Gaussian Laplacian

(m,n) median mean variance median mean variance

(4000, 50) 0.9555 0.9399 3.3 · 10−3 0.9601 0.9473 3.0 · 10−3

(2000, 100) 0.9639 0.9550 11 · 10−4 0.9651 0.9594 9.91 · 10−4

(1000, 200) 0.9665 0.9615 4.68 · 10−4 0.9676 0.9639 4.26 · 10−4

(1000, 500) 0.9690 0.9668 1.38 · 10−4 0.9689 0.9677 1.26 · 10−4

Table 1: Empirical variance of estimates of parameter α considering Gaussian and Laplace noises.

2 Modeling

2.1 Bayesian basics

I will now focus on the Bayesian estimation of parameters in a model, where the parameters are constant
in time. In such a model, when new data arrives the parameter distribution is updated according to the
Bayes rule

f(θ|dt,Ft−1) =
f(dt|θ,Ft−1)f(θ|Ft−1)∫

Ω
f(dt|θ,Ft−1)f(θ|Ft−1)dθ

(8)

where Ω is the parameter space of parameters θ, dt = (yt, φt;1, φt;2, . . .) is the newly arrived data vector
realization and Ft−1 is a filtration containing all the older information – in case of a data driven model it
is fully determined by previous realizations of data. f(·) are probability density functions differentiated
by their argument (including condition).

An update in a model with innovations of Gaussian form has been described in [15]. In such a case
for the model to be analytically tractable, we choose the prior distribution of the parameters to be of the
Gauss-Inverse-Wishart (Normal-Inverse-Gamma) form. Such a choice reduces the data update step to a
simple algebraic update of sufficient statistics V and ν appearing in the GiW probability density. Such
a reduction is caused by two important properties of the GiW probability density function:

• The density is a product of an exponential function with factors independent of the data, therefore
the data update reduces to addition of the exponents of the two factors on the right-hand side of (8).
• The quadratic form in the exponents of both these factors allows for collapsing all the data entries

into sufficient statistic V.

In case of a model with Laplace innovations, the first property of the previous list is preserved, while
the second one doesn’t hold anymore as we shall see. At time t we can rewrite the model from the AR
form

Yt = α′Φt + σet (9)

where ′ means transposition and the regression vector Φt has length k, to a density form as

f(yt|α, σ,φt,Ft−p−1) =
1

2σ
exp

[
− 1

σ
|yt −α′φt|

]
(10)



so that this is the first factor in the numerator on the right-hand side of (8) and p is the model order.
The second factor needs to be chosen in a form Bayesian conjugate to the model just mentioned, which
means it has to stay form invariant after the Bayesian estimation step. Such a distribution has to be of
the form

f(α, σ|F0) =
1

Iσν
exp

[
− 1

σ

∑
i

|ri − s′iα|

]
(11)

where I is the normalization factor, (ri, si) ∈ Rk+1 and i is from an arbitrary finite index set. As we
proceed with the data update, we see numbers ri, si are in the role of data realizations of the modelled
variable so that after the first data update by (10) at time t = p we obtain the posterior distribution of
the parameters conditioned on data

f(α, σ|F1) =
1

Ipσν+1
exp

[
− 1

σ

[∑
i

|ri − s′iα|+
∣∣yp − φ′pα∣∣

]]
(12)

which after reindexing could be rewritten in the same form as (11). For the sake of simple notation I will
from now on consider the prior to be improper, so that ai,bi will not appear in the formulas and the
only entries will be data.

2.2 Computing the normalization factor – integration over parameter space

As stated above, the Bayesian estimation will allow us to construct an entire posterior distribution of
the parameters. As new data arrive we have to perform the data update of the distribution and because
the terms with absolute value in the exponent of the posterior distribution don’t collapse into a low-
dimensional sufficient statistic, we have to remember all the previous data obtained in a form of a table
and we are practically done with computations except for the terms containing an integral over the
parameter space – namely Ip in (12) and the denominator on the right-hand side of (8). We shall now
study such an integral in greater detail. In a case of multivariate parameter α, the integral can be written
as a sum of terms without the absolute value in exponent∫

Ω

1

Iτ−1στ
exp

[
− 1

σ

τ∑
t=2

∣∣yt − φ′tα∣∣
]
dσdα =

∞∫
0

∫
R1

1

Iτ−1στ
exp

[
− 1

σ

(
ȳτ ;R1

− φ̄′τ ;R1
α
)]
dα

 dσ +

+

∞∫
0

∫
R2

1

Iτ−1στ
exp

[
− 1

σ

(
ȳτ ;R2

− φ̄′τ ;R2
α
)]
dα

 dσ + · · · (13)

where

Ri =
{
α : ∀j ∈ Ji, yj − φ′jα ≥ 0;∀l ∈ Li, yl − φ′lα < 0

}
(14)

i ∈ {1, 2, . . . , N} ;Ji,Li ⊂ {1, . . . , τ} ;Li = J Ci

where C stands for complement in the set of indices {1, . . . , τ} and

ȳτ ;Ri
=

τ∑
t=p

(−1)I(t∈Li)yt φ̄τ ;Ri;j =

τ∑
t=p

(−1)I(t∈Li)φt;j (15)

The parameter space is therefore divided by hyperplanes yt − φ′tα = 0 into convex polytopes Ri, which
then serve as a domain of integration for the individual integrals. Alternatively to the set of inequalites,
the polytope can be represented by all its vertices v1,v2, . . . ,vk or a complex combination of a vertex and
vectors leading from one vertex to the next u1 = v2−v1,u2 = v3−v1, . . . ,uk−1 = vk−v1,. The vertices
could be obtained by solving the individual sets of linear inequalities, but such a serial computation is
not at all effective, so we will state a more effective algorithm for establishing the region later. Now
suppose, we know all the vertices of a given polytope and have to solve one of the integrals appearing on
the right-hand side of (13) ∫

v1 + x1u1 + x2u2 + . . .+ xkuk

∀i xi ≥ 0,
∑k
i=1 xi ≤ 1, σ ∈ (0,∞)

1

Iτ−1στ
exp

[
− 1

σ

(
ȳt − φ̄

′
tα
)]
dσdα = ♠ (16)



The integral over α can be solved by the method presented in [16], but such integration only works
for n-polytopes – n dimensional polytopes with n + 1 vertices, because then the vectors v1, . . . ,vk−1

are linearly independent. If the an n-dimensional polytope has more than n + 1 vertices, we must first
find its triangulation. A method of triangulation is described in [17]. Once we have a triangulation
into n-polytopes we can use the substitution theorem to transform the integral into an integral over an
n-simplex coordinates x1, . . . , xk, by a linear transform

αi(x) = ui0 + x1ui1 + x2ui2 + . . .+ xkuik (17)

where
ui0 = vi1 uij = vij − vi0 i, j ∈ {1, . . . , k} (18)

we obtain

♠ =

∞∫
0

1

Iτ−1στ
exp

[
−
ȳt +

∑k
j=1 φ̄t;juj0

σ

]
︸ ︷︷ ︸

−a0/σ

1∫
0

Φ1∫
0

Φ2∫
0

· · ·
Φk−1∫
0

k∏
i=1

exp

[∑k
j=1 φ̄t;juji

σ

]
︸ ︷︷ ︸

ai/σ

xi |J | dxdσ (19)

where the Jacobian

|J | =

∣∣∣∣∣∣∣∣
u11 u12 · · · u1k

...
...

...

uk1 uk2 · · · ukk

∣∣∣∣∣∣∣∣ (20)

and
Φi = 1− x1 − x2 − . . .− xi i ∈ {1, 2, . . . , k − 1} (21)

Such an integral can already be analytically solved and the solution can be proved to be

♠ =
Γ(τ − k − 1) |J |

Iτ−1

k∑
i=1

 1

ai (ai − a0)
τ−k−1

∏
j=1,...,k

i 6=j

1

(ai − aj)

 (22)

where the ais have been defined in equation (19).

2.3 Efficient algorithm, computational issues and future work

For being able to integrate over the entire parameter space, we have to be able to efficiently split the
space into a complex of convex polytopes. Such a split could be obtained by serial solution of the
sets of inequalities in equation (13), but such a procedure would be very inefficient. Instead, we can
proceed with a splitting algorithm presented in [18]. We first need a Hasse diagram representation of the
complex – for each convex polyhedron a collection of sets of lower d-dimensional polytopes Nd, where
d ∈ {0, 1, . . . , k} and arrows marking subordinations of polytopes between neighboring sets Nd−1, Nd.
From such a representation we can proceed with the algorithm. For each polytope in the complex we do

begin
1. Classify the position of all the vertices relative to the splitting hyperplane and mark them + and

− . Set i = 1.
2. For each p ∈ Ni do:
• If none of the facets (f ∈ Ni−1 being connected by an arrow to p) is + ( − ), set p to be − ( + )

and goto 3.
• Create new i − 1 dimensional polytope q, set it as = and connect it to all i − 2 dimensional

polytopes in p classified = . Create two polytopes p+ marked + and p− marked − , connect it
to q and all the i+ 1 polytopes connected to p. Connect to p+(p−) all the i− 1 facets of p marked
+ ( − ). Remove p from Ni.

3. If i < k set i = i+ 1 and goto 2.
4. Compute the geometric coordinates of vertices marked = .

end

With the use of the algoritm come certain computational issues that I have not resolved yet. At the
beginning we need a starting complex of convex polytopes to split. Such a complex can be obtained by
solving the set of the first k non-degenerate hyperplane conditions and obtaining their intersection and



all the lines going through that intersection. As can be seen, the polytopes of such complex will not
be bounded. We can resolve this by cutting these polytopes off at some point. Such a cutoff has to be
carefully considered and its incorporation into the above algorithm is still not fully discovered.

Also when new conditions (data) arrive, some polytopes obtained by the splitting algorithm can be
very little. A way of treating these regions is given in [18]. Another numerical issue can arrise when we
integrate over very little region high function values at the far tails where we integrate little function
values over large space regions. The influence of these numerical inefficiencies have to be considered as
well.

Finally, it would be nice to incorporate the triangulation of k-dimensional polytopes which are not k-
polytopes into the algorithm presented above to reduce computational needs. Again such an incorporation
has been left for future study.
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